• Acoustic mapping of submerged Stone Age sites – a HALD approach

      Grøn, Ole; Boldreel, Lars Ole; Smith, Morgan F.; Joy, Shawn; Tayong-Boumda, Rostand; Mäder, Andreas; Bleicher, Niels; Madsen, Bo; Cvikel, Deborah; Nilsson, Björn; et al. (MDPI, 2021-01-27)
      Acoustic response from lithics knapped by humans has been demonstrated to facilitate effective detection of submerged Stone Age sites exposed on the seafloor or embedded within its sediments. This phenomenon has recently enabled the non-invasive detection of several hitherto unknown submerged Stone Age sites, as well as the registration of acoustic responses from already known localities. Investigation of the acoustic-response characteristics of knapped lithics, which appear not to be replicated in naturally cracked lithic pieces (geofacts), is presently on-going through laboratory experiments and finite element (FE) modelling of high-resolution 3D-scanned pieces. Experimental work is also being undertaken, employing chirp sub-bottom systems (reflection seismic) on known sites in marine areas and inland water bodies. Fieldwork has already yielded positive results in this initial stage of development of an optimised Human-Altered Lithic Detection (HALD) method for mapping submerged Stone Age sites. This paper reviews the maritime archaeological perspectives of this promising approach, which potentially facilitates new and improved practice, summarizes existing data, and reports on the present state of development. Its focus is not reflection seismics as such, but a useful resonance phenomenon induced by the use of high-resolution reflection seismic systems.
    • A comprehensive phylogenomic platform for exploring the angiosperm tree of life

      Baker, William J.; Bailey, Paul; Barber, Vanessa; Barker, Abigail; Bellot, Sidonie; Bishop, David; Botigué, Laura R.; Brewer, Grace E.; Carruthers, Tom; Clarkson, James J.; et al. (Oxford University Press, 2021-05-13)
      The tree of life is the fundamental biological roadmap for navigating the evolution and properties of life on Earth, and yet remains largely unknown. Even angiosperms (flowering plants) are fraught with data gaps, despite their critical role in sustaining terrestrial life. Today, high-throughput sequencing promises to significantly deepen our understanding of evolutionary relationships. Here, we describe a comprehensive phylogenomic platform for exploring the angiosperm tree of life, comprising a set of open tools and data based on the 353 nuclear genes targeted by the universal Angiosperms353 sequence capture probes. The primary goals of this paper are to (i) document our methods, (ii) describe our first data release and (iii) present a novel open data portal, the Kew Tree of Life Explorer (https://treeoflife.kew.org ). We aim to generate novel target sequence capture data for all genera of flowering plants, exploiting natural history collections such as herbarium specimens, and augment it with mined public data. Our first data release, described here, is the most extensive nuclear phylogenomic dataset for angiosperms to date, comprising 3,099 samples validated by DNA barcode and phylogenetic tests, representing all 64 orders, 404 families (96%) and 2,333 genera (17%). A "first pass" angiosperm tree of life was inferred from the data, which totalled 824,878 sequences, 489,086,049 base pairs, and 532,260 alignment columns, for interactive presentation in the Kew Tree of Life Explorer. This species tree was generated using methods that were rigorous, yet tractable at our scale of operation. Despite limitations pertaining to taxon and gene sampling, gene recovery, models of sequence evolution and paralogy, the tree strongly supports existing taxonomy, while challenging numerous hypothesized relationships among orders and placing many genera for the first time. The validated dataset, species tree and all intermediates are openly accessible via the Kew Tree of Life Explorer and will be updated as further data become available. This major milestone towards a complete tree of life for all flowering plant species opens doors to a highly integrated future for angiosperm phylogenomics through the systematic sequencing of standardised nuclear markers. Our approach has the potential to serve as a much-needed bridge between the growing movement to sequence the genomes of all life on Earth and the vast phylogenomic potential of the world's natural history collections.
    • Factors affecting targeted sequencing of 353 nuclear genes from herbarium specimens spanning the diversity of angiosperms

      Brewer, Grace E.; Clarkson, James J.; Maurin, Olivier; Zuntini, Alexandre R.; Barber, Vanessa; Bellot, Sidonie; Biggs, Nicola; Cowan, Robyn S.; Davies, Nina M.; Dodsworth, Steven; et al. (Frontiers, 2019-09-12)
      The world’s herbaria collectively house millions of diverse plant specimens, including endangered or extinct species and type specimens. Unlocking genetic data from the typically highly degraded DNA obtained from herbarium specimens was difficult until the arrival of high-throughput sequencing approaches, which can be applied to low quantities of severely fragmented DNA. Target enrichment involves using short molecular probes that hybridise and capture genomic regions of interest for high-throughput sequencing. In this study on herbariomics, we used this targeted sequencing approach and the Angiosperms353 universal probe set to recover up to 351 nuclear genes from 435 herbarium specimens that are up to 204 years old and span the breadth of angiosperm diversity. We show that on average 207 genes were successfully retrieved from herbarium specimens, although the mean number of genes retrieved and target enrichment efficiency is significantly higher for silica gel-dried specimens. Forty-seven target nuclear genes were recovered from a herbarium specimen of the critically endangered St Helena boxwood, Mellissia begoniifolia, collected in 1815. Herbarium specimens yield significantly less high molecular weight DNA than silica gel-dried specimens, and genomic DNA quality declines with sample age which is negatively correlated with target enrichment efficiency. Climate, taxon-specific traits, and collection strategies additionally impact target sequence recovery. We also detected taxonomic bias in targeted sequencing outcomes for the 10 most numerous angiosperm families that were investigated in depth. We recommend that 1) for species distributed in wet tropical climates, silica gel-dried specimens should be used preferentially, 2) for species distributed in seasonally dry tropical climates, herbarium and silica gel-dried specimens yield similar results, and either collection can be used, 3) taxon specific traits should be explored and established for effective optimisation of taxon-specific studies using herbarium specimens, 4) all herbarium sheets should, in future, be annotated with details of the preservation method used, 5) long-term storage of herbarium specimens should be in stable low humidity and low temperature environments, and 6) targeted sequencing with universal probes, such as Angiosperms353 should be investigated closely as a new approach for DNA barcoding that will ensure better exploitation of herbarium specimens than traditional Sanger sequencing approaches.