• Engineering nucleotide specificity of succinyl-CoA synthetase in blastocystis: the emerging role of gatekeeper residues

      Vashisht, Kapil; Verma, Sonia; Gupta, Sunita; Lynn, Andrew M.; Dixit, Rajnikant; Mishra, Neelima; Valecha, Neena; Hamblin, Karleigh; Maytum, Robin; Pandey, Kailash C.; et al. (American Chemical Society, 2017-01-24)
      Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called "electrostatic gatekeeper effect". This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC 6.2.1.5), we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity. Moreover, nucleotide binding site mutant (LF) had no effect on GTP specificity and remained ATP-specific. However, via combination of the gatekeeper mutant with the nucleotide binding site mutant (ED+LF), a complete reversal of nucleotide specificity was obtained with GTP, but no detectable activity was obtained with ATP. This striking result of the combined mutant (ED+LF) was due to two changes; negatively charged gatekeeper residues (ED) favored GTP access, and nucleotide binding site residues (LF) altered ATP binding, which was consistent with the hypothesis of the "electrostatic gatekeeper effect". These results were further supported by molecular modeling and simulation studies. Hence, it is imperative to extend the strategy of the gatekeeper effect in a different range of crucial enzymes (synthetases, kinases, and transferases) to engineer substrate specificity for various industrial applications and substrate-based drug design.
    • How helminth lipid-binding proteins offload their ligands to membranes: Differential mechanisms of fatty acid transfer by the ABA-1 polyprotein allergen and Ov-FAR-1 proteins of nematodes and Sj-FABPc of schistosomes

      McDermott, Lindsay C.; Kennedy, Malcolm W.; McManus, Donald P.; Bradley, Jannette E.; Cooper, Alan; Storch, Judith; Rutgers University; University of Glasgow; Queensland Institute for Medical Research; University of Nottingham (American Chemical Society, 2002-05-28)
      Three different classes of small lipid-binding protein (LBP) are found in helminth parasites. Although of similar size, the ABA-1A1 (also designated As-NPA-A1) and Ov-FAR-1 (formerly known as Ov20) proteins of nematodes are mainly alpha-helical and have no known structural counterparts in mammals, whereas Sj-FABPc of schistosomes is predicted to form a beta-barrel structure similar to the mammalian family of intracellular fatty acid binding proteins. The parasites that produce these proteins are unable to synthesize their own complex lipids and, instead, rely entirely upon their hosts for supply. As a first step in elucidating whether these helminth proteins are involved in the acquisition of host lipid, the process by which these LBPs deliver their ligands to acceptor membranes was examined, by comparing the rates and mechanisms of ligand transfer from the proteins to artificial phospholipid vesicles using a fluorescence resonance energy transfer assay. All three proteins bound the fluorescent fatty acid 2-(9-anthroyloxy)palmitic acid (2AP) similarly, but there were clear differences in the rates and mechanisms of fatty acid transfer. Sj-FABPc displayed a collisional mechanism; 2AP transfer rates increased with acceptor membrane concentration, were modulated by acceptor membrane charge, and were not diminished in the presence of increasing salt concentrations. In contrast, transfer of ligand from Ov-FAR-1 and ABA-1A1 involved an aqueous diffusion step; transfer rates from these proteins were not modulated by acceptor membrane concentration or charge but did decrease with the ionic strength of the buffer. Despite these differences, all of the proteins interacted directly with membranes, as determined using a cytochrome c competition assay, although Sj-FABPc interacted to a greater extent than did Ov-FAR-1 or rABA-1A1. Together, these results suggest that Sj-FABPc is most likely to be involved in the intracellular targeted transport and metabolism of fatty acids, whereas Ov-FAR-1 and ABA-1A1 may behave in a manner analogous to that of extracellular LBPs such as serum albumin and plasma retinol binding protein.
    • Mutagenic and chemical modification of the ABA-1 allergen of the nematode Ascaris: consequences for structure and lipid binding properties

      McDermott, Lindsay C.; Moore, Joyce; Brass, Andrew; Price, Nicholas C.; Kelly, Sharon M.; Cooper, Alan; Kennedy, Malcolm W.; University of Glasgow; University of Manchester (American Chemical Society, 2001-08-21)
      The polyprotein allergens/antigens of nematodes (NPAs) are the only lipid binding proteins known to be produced as polyproteins. Cleavage of the large polyprotein precursors at regularly spaced proteinase cleavage sites produces 10 or 11 individual protein units of approximately 15 kDa. The sequences of these units are highly diverse within and between species, but there are five absolutely or strongly conserved amino acid positions (Trp15, Gln20, Leu42, Cys64, and Cys120). We have tested the role of these signature amino acids by mutational or chemical alteration of the ABA-1 protein of Ascaris, and examined the resulting modified proteins for perturbations of their lipid binding activities and structural integrity. Substitution of Trp15 and Gln20 both affect the stability of the protein in terms of resistance to thermal or chemical denaturation, but the ligand binding function is unaffected. Mutation of Leu42, however, disrupts both the protein's structural stability and functional integrity, as does chemical disruption of the disulfide bridge formed between Cys64 and Cys120. We also find that the C-terminal, but not the N-terminal, half of the protein binds fatty acids, indicating that the binding site may be confined to this part of the protein. This also supports the idea that the NPA units are themselves derived from an ancient duplication event, and that they may comprise two functionally distinct domains.
    • Zn-alpha2-glycoprotein, an MHC class I-related glycoprotein regulator of adipose tissues: modification or abrogation of ligand binding by site-directed mutagenesis

      McDermott, Lindsay C.; Freel, June A.; West, Anthony P.; Bjorkman, Pamela J.; Kennedy, Malcolm W.; University of Glasgow; California Institute of Technology (American Chemical Society, 2006-01-31)
      Zn-alpha(2)-glycoprotein (ZAG) is a soluble lipid-mobilizing factor associated with cancer cachexia and is a novel adipokine. Its X-ray crystal structure reveals a poly(ethylene glycol) molecule, presumably substituting for a higher affinity natural ligand, occupying an apolar groove between its alpha(1) and alpha(2) domain helices that corresponds to the peptide binding groove in class I MHC proteins. We previously provided evidence that the groove is a binding site for hydrophobic ligands that may relate to the protein's signaling function and that the natural ligands are probably (polyunsaturated) fatty acid-like. Using fluorescence-based binding assays and site-directed mutagenesis, we now demonstrate formally that the groove is indeed the binding site for hydrophobic ligands. We also identify amino acid positions that are involved in ligand binding and those that control the shape and exposure to solvent of the binding site itself. Some of the mutants showed minimal effects on their binding potential, one showed enhanced binding, and several were completely nonbinding. Particularly notable is Arg-73, which projects into one end of the binding groove and is the sole charged amino acid adjacent to the ligand. Replacing this amino acid with alanine abolished ligand binding and closed the groove to solvent. Arg-73 may therefore have an unexpected dual role in binding site access and anchor for an amphiphilic ligand. These data add weight to the distinctiveness of ZAG among MHC class I-like proteins in addition to providing defined binding-altered mutants for cellular signaling studies and potential medical applications.