• Architecture and self-assembly of Clostridium sporogenes and Clostridium botulinum spore surfaces illustrate a general protective strategy across spore formers

      Janganan, Thamarai K.; Mullin, Nic; Dafis-Sagarmendi, Ainhoa; Brunt, Jason; Tzokov, Svetomir B.; Stringer, Sandra; Moir, Anne; Chaudhuri, Roy R.; Fagan, Robert P.; Hobbs, Jamie K.; et al. (American Society for Microbiology, 2020-07-01)
      Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can achieve these protective properties through extensive disulfide cross-linking of self-assembled arrays of cysteine-rich proteins. We predicted that this could be a mechanism employed by spore formers in general, even those from other genera. Here, we tested this by revealing in nanometer detail how the outer envelope (exosporium) in Clostridium sporogenes (surrogate for C. botulinum group I), and in other clostridial relatives, forms a hexagonally symmetric semipermeable array. A cysteine-rich protein, CsxA, when expressed in Escherichia coli, self-assembles into a highly thermally stable structure identical to that of the native exosporium. Like the exosporium, CsxA arrays require harsh “reducing” conditions for disassembly. We conclude that in vivo, CsxA self-organizes into a highly resilient, disulfide cross-linked array decorated with additional protein appendages enveloping the forespore. This pattern is remarkably similar to that in Bacillus spores, despite a lack of protein homology. In both cases, intracellular disulfide formation is favored by the high lattice symmetry. We have identified cysteine-rich proteins in many distantly related spore formers and propose that they may adopt a similar strategy for intracellular assembly of robust protective structures.
    • Arsenite oxidase also functions as an antimonite oxidase

      Wang, Qian; Warelow, Thomas P.; Kang, Yoon-Suk; Romano, Christine; Osborne, Thomas H.; Lehr, Corinne R.; Bothner, Brian; McDermott, Timothy R.; Santini, Joanne M.; Wang, Gejiao; et al. (American Society for Microbiology, 2014-12-29)
      Arsenic and antimony are toxic metalloids and are considered priority environmental pollutants by the U.S. Environmental Protection Agency. Significant advances have been made in understanding microbe-arsenic interactions and how they influence arsenic redox speciation in the environment. However, even the most basic features of how and why a microorganism detects and reacts to antimony remain poorly understood. Previous work with Agrobacterium tumefaciens strain 5A concluded that oxidation of antimonite [Sb(III)] and arsenite [As(III)] required different biochemical pathways. Here, we show with in vivo experiments that a mutation in aioA [encoding the large subunit of As(III) oxidase] reduces the ability to oxidize Sb(III) by approximately one-third relative to the ability of the wild type. Further, in vitro studies with the purified As(III) oxidase from Rhizobium sp. strain NT-26 (AioA shares 94% amino acid sequence identity with AioA of A. tumefaciens) provide direct evidence of Sb(III) oxidation but also show a significantly decreased Vmax compared to that of As(III) oxidation. The aioBA genes encoding As(III) oxidase are induced by As(III) but not by Sb(III), whereas arsR gene expression is induced by both As(III) and Sb(III), suggesting that detection and transcriptional responses for As(III) and Sb(III) differ. While Sb(III) and As(III) are similar with respect to cellular extrusion (ArsB or Acr3) and interaction with ArsR, they differ in the regulatory mechanisms that control the expression of genes encoding the different Ars or Aio activities. In summary, this study documents an enzymatic basis for microbial Sb(III) oxidation, although additional Sb(III) oxidation activity also is apparent in this bacterium.
    • Genome sequence of the mycotoxigenic crop pathogen Fusarium proliferatum strain ITEM 2341 from date palm

      Almiman, Bandar F.; Shittu, Taiwo Adewale; Muthumeenakshi, Sreenivasaprasad; Baroncelli, Riccardo; Sreenivasaprasad, Surapareddy; University of Bedfordshire; University of Salamanca (American Society for Microbiology, 2018-09-06)
      Fusarium proliferatum is a widely distributed fungal pathogen associated with more than 26 crop species important in global food security. Its strong mycotoxigenic capability with potential impacts on human and animal health is well recognized. In this work, we report the draft genome sequence of F. proliferatum strain ITEM 2341, originally isolated from date palm, providing a platform for further comparative and functional genomic investigations.