• Advances in body-centric wireless communication: applications and state-of-the-art

      Abbasi, Qammer Hussain; Ur-Rehman, Masood; Alomainy, Akram; Qaraqe, Khalid (The IET, 2016-06-01)
    • Analysis of sub-channel correlation in dual-polarised MIMO systems via a polarisation diversity scheme

      Fang, Cheng; Liu, Enjie; Ur-Rehman, Masood; University of Bedfordshire (IEEE, 2017-02-23)
      A polarisation diversity combing scheme for dual-polarised multiple-input and multiple-output channels in small cell environments introduced and evaluated. The scheme is based on post analysis of channel measurement data captured from scenarios and includes indoor-to-indoor, indoor-to-outdoor, and indoor-outdoor-indoor propagation. An analysis of link signal strength and correlation with respect to frequency and polarisation revealed profound differences between copolarised and cross-polarised links in terms of received signal strength and correlation between frequencies. Utilizing these differences, a polarisation diversity combing scheme is evaluated which is shown to produce an average of 10.6-dB polarisation diversity gain.
    • Antennas for global navigation satellite systems

      Chen, Xiaodong; Parini, Clive G.; Collins, Brian; Yao, Yuan; Ur-Rehman, Masood (Wiley, 2012-03-01)
    • Broadband antennas

      Zhang, Zhiya; Ur-Rehman, Masood; Yang, Xiaodong; Serpedin, Erchin; Ren, Aifeng; Zuo, Shaoli; Rahman, Atiqur; Abbasi, Qammer Hussain (IGI Global, 2015-08-01)
    • Design and study of a circular polarised conical-disc-backed spiral antenna for X-Band applications

      Ur-Rehman, Masood; Safdar, Ghazanfar Ali; Yang, Xiaodong; Chen, Xiaodong; University of Bedfordshire; Xidian University; Queen Mary University of London (IEEE, 2017-10-02)
      Design of a conical-disc-backed circular-polarized Archimedean single-arm spiral antenna is presented in this paper. The antenna operation covers the X -band frequencies ranging from 8 to 12 GHz. The antenna makes use of a very simple structure having the single-arm spiral backed by a cone-shaped metallic disc to achieve high gain, circular polarization, and unidirectional symmetric radiation near the boresight. The diameter of the antenna only measures to 40 mm. The simulated and measured results show that the antenna has a very good impedance matching (better than −10 dB), good right-hand circular polarization (with an axial ratio of ≤3 dB) throughout the frequency range of interest, and offers a maximum peak gain of 11.4 dBiC. The presented S11 response and radiation pattern results also show that the antenna offers excellent performance in the X -band with no need of a balun. Antenna usefulness is also established through a detailed parametric study and comparison with a traditional flat disc structure. Compact size, simple design, wide range, and high gain make the proposed antenna design a good choice for radar, terrestrial communications, and satellite/aerospace communications applications.
    • A low profile antenna for millimetre-wave body-centric applications

      Ur-Rehman, Masood; Malik, Nabeel A.; Yang, Xiaodong; Abbasi, Qammer Hussain; Xidian University (IEEE, 2017-09-27)
      Millimetre-Wave frequencies are a front runner contender for the next generation body-centric wireless communications. In this paper, design of a very low profile antenna is presented for body-centric applications operating in the millimetre-wave frequency band centred at 60 GHz. The antenna has an overall size of 14£10.5£1.15 mm3 and is printed on a flexible printed circuit board. The performance of the antenna is evaluated in off-body, on-body and body-to-body communication scenarios using a realistic numerical phantom and verified through measurements. The antenna has a bandwidth of 9.8 GHz and offers a gain of 10.6 dBi in off-body (free space) configuration while 12.1 dBi in on-body configuration. It also acheives an efficiency of 74% in off-body and 63% in on-body scenario. The small and flexible structure of the antenna along with excellent impedance matching, broad bandwidth, high gain and good efficiency makes it a suitable candidate to attain simultaneous data transmission/reception at millimetre-wave frequencies for the 5G body-centric applications.
    • Millimetre-wave antennas and systems for the future 5G

      Ur-Rehman, Masood; Abbasi, Qammer Hussain; Rahman, Atiqur; Khan, Imdad; Chattha, Hassan Tariq; Abdul Matin, Mohammad; University of Bedfordshire; Texas A & M University at Qatar; University of Glasgow; North South University, Dhaka; et al. (Hindawi, 2017-04-10)
      Editorial of the special issue on Millimetre-Wave Antennas and Systems for the Future 5G
    • Multiband split-ring resonator based planar inverted-F antenna for 5G applications

      Ishfaq, Muhammad Kamran; Rahman, Tharek Abd; Chattha, Hassan Tariq; Ur-Rehman, Masood; Universiti Teknologi Malaysia; Government College University, Faisalabad; Islamic University in Madinah; University of Bedfordshire (Hindawi, 2017-03-21)
      5G, the fifth generation of wireless communications, is focusing on multiple frequency bands, such as 6GHz, 10GHz, 15GHz, 28GHz, and 38GHz, to achieve high data rates up to 10 Gbps or more.The industry demands multiband antennas to cover these distant frequency bands, which is a task much more challenging. In this paper, we have designed a novel multiband split-ring resonator (SRR) based planar inverted-F antenna (PIFA) for 5G applications. It is composed of a PIFA, an inverted-L parasitic element, a rectangular shaped parasitic element, and a split-ring resonator (SRR) etched on the top plate of the PIFA.The basic PIFA structure resonates at 6GHz. An addition of a rectangular shaped parasitic element produces a resonance at 15GHz. The introduction of a split-ring resonator produces a band notch at 8GHz, and a resonance at 10GHz, while the insertion of an inverted-L shaped parasitic element further enhances the impedance bandwidth in the 10GHz band. The frequency bands covered, each with more than 1GHz impedance bandwidth, are 6GHz (5–7GHz), 10GHz (9–10.8GHz), and 15GHz (14-15GHz), expected for inclusion in next-generation wireless communications, that is, 5G. The design is simulated using Ansys Electromagnetic Suite 17 simulation software package.The simulated and the measured results are compared and analyzed which are generally in good agreement.